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Plans and Aims:

some of the arguments and techniques developed originally and applied so far
exclusively only in the Lorentzian case do also apply to Riemannian spaces

@ Time evolution and the degrees of freedom

e intimate relations between various parts of Einstein’'s equations
o fully constrained evolutionary scheme
e evolutionary-evolutionary systems

... gauge choices

... the conformal structure

... gravitational degrees of freedom

Based on some recent papers

@ |. Ricz: Is the Bianchi identity always hyperbolic?, Class. Quantum Grav. 31 (2014)
155004

@ |. Rdcz: Cauchy problem as a two-surface based ‘geometrodynamics’, Class. Quantum
Grav. 32 (2015) 015006

@ |. Racz: Dynamical determination of the gravitational degrees of freedom, arXiv:1412.0667
(2015)

@ |. Ricz: Constraints as evolutionary systems, Class. Quantum Grav. 33 015014 (2016)
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ssumptions:

o The primary space: (M, gu)
o M : n+1-dim. (n > 3), smooth, paracompact, connected, orientable manifold

e smoothly foliated by a one-parameter family of homologous hypersurfaces
determined by a smooth function o : M — R with non-vanishing 9,0 gradient;
a flow 0@ has also been chosen such that 0%9,0 =1

o one of these level surfaces is smoothly foliated by a one-parameter family
of homologous codimension-two surfaces determined by a smooth function
p: M — R with a.e. non-vanishing 9,p gradient; a “horizontal” flow p® has
also been chosen such that p®9d,p =1

e —> M is smoothly foliated by

a two-parameter family of codimension-two-surfaces:

® gab: smooth Lorentzian_ | . ;) or Riemannian( . ) metric

e Einsteinian space: Einstein's equation restricting the geometry

Gab - gab =0

with source term ¥¢,;, having a vanishing divergence, V%%, = 0.

v
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Foliations and their use
The main creatures:

@ n% the ‘unit norm’ vector field that is normal to the X, level surfaces

o ¢ takes the value —1 or +1 for Lorentzian or Riemannian metric gq», resp.

@ the projection operator and the metric induced

‘ hab = 5ab - Enanb ‘ ‘ hab = haehbf gef = Gab — €NgNp ‘

R denotes the covariant derivative operator associated with hgy

Gob = Nang e + [Ng Pp + N Pa] + Gap

‘e:nenfgef’ pazeheanfgefa 6ab:heahfbgef‘

@ r.h.s. of Einstein’s equation: E., = Gap — Yap

(M) (Evocr)

) (o) )
Ew=ngwE " +[n.,E " +npE, |+ (E, )

+ ha E

E™ =nenf By, B =eheanf Eoy, Eoy " = hehdy Eop — hay B

a
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Foliations and their use
Relations between various parts of the basic equations:

2. E? 1 DeE?Y 4 B (Kke.) — 2 (¢ BV
K (E(svou 4+ B E(H))} -0
Za By + DBy 4 hay BT 4 (Ko EY + ET
— By +hay B )01 =0

v

If the constraint expressions E" and E; * vanish on the o = const level
surfaces then the relations

(evocr)

K®E, =0
(SVOE) (evoc)

D°E,, *E.p =0

hold for the evolutionary expression E( Yoo,

heohy Bop = B+ bt
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Foliations and their use
The two-parameter foliations:

The Lie drag this foliation of X along the integral curves of the vector field o®
yields then a two-parameter foliation .75 ,:

o the fields 7%, 7;; and the projection ‘ﬁkl = hF, — 7F7; |, to the
codimension-two surfaces ., ,, get to be well-defined on each of the
individual o = const hypersurfaces
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Foliations and their use

The equations on the o = const hypersurfaces:

Some important relations we learned while studying the kinematical background:

using

hbehdeef = (n)ffbd + € {—.,iﬂnKbd — Kpg K¢ 4+ 2Kp° Kge — GN_lDdeN}

R = "R+ e {-2Z,(Kuah"") — (K.*)* — Ke; K/ —2eN-1D*D.N}

one gets

= ho“ha! {[Res = 4 6esB) — 9ha} = ho*ha! {[Res ~ § herR] ~%ha)
(n) (n) (n) (n) (n) n
= Rbd_%hef Rl— %a= Gpa — gbd:
(n)

Gy = S — e{ — LuKap — (K°)Kap + 2 Kae K — e N~ Do DyN

where

+ hao [ Za(K*e) + £ (K.)" + L Koy K + e N7 D°D.N] }
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Foliations and their use
The explicit forms:

Expressions in the [n — 1] + 1 decomposition:

“Ei; = ™ + mE v m B+ (B O+ A, ETY)
SO g () SM) g ~p(m) NEVOL) o ~p (m) ~ A
‘E =00 "By, B =740 "Eep, By =777 Eep — % E ‘
B = L{—R+ (KY)? - KuK* — 23}
= 3 Kl ¢
B*— BiRy— B.RY—Fi,
~NEvor) = 5y S 1A A
V0= Ry — Ry — (RY)Ry, +2R.RY — N1 D,D;N
+ 3 { LK + KyK* + N"'D'D\NY} — [64; — €734
where ﬁi,ﬁij and R denote .
~ fomg () ~ -~k -~ ~k ~ ()
e=n*al "y, Bi=7%0 "% and ng— A Gy
and = ~ ~ ~
Ky = 33 Dyii; = 5 LAs
UW-ITP, 11 January 2019 8/24
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Foliations and their use

Relations between various parts of the basic equations |.:

Substituting the [n — 1] + 1 splitting of '’

(N)
Kab ab -0

Da[(n)E‘ab] —ent (n)Elab =0

(n) (SVOL)
Eap = heoh?y By = B! + b BT

KB, =k B 4 oke B KefE%{)Jr (Ke) B

. a (M) —~ . ~(H) ca S5M) (i~ ~ . ~(M) . ~(EV ~ =)
7By = [(Aan®) B + (29 B e + an®) By 4+ 1% [Bar o+ Aap BV

as

76D " Bue] = 25 B4 DB 1 (Re) BV @f}"{# Fep B R —2e BSY
740 Bac] = 25 By + DUBG 450, BT + (Re0) By - e B>
LB 139D B =&
2 E[()M) P,E™ = 3,
= IF E(;vm)f 0 holds: a linear and homogeneous FOSH for (E(H),E;M))T
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Foliations and their use

at do the above observations imply?

Theorem (1.)

@ Assume that the primary constraint
. (1) (M) .

expressions '~ and E_,  vanish on

the o = const level surfaces, also that

@ the secondary constraint expressions
E™ and E;M) vanish along the
hypersurface yielded by the Lie
dragging, W), = ®[%p,], of one of
the level surfaces .7, foliating .

e —> Remark (i).: the Lie dragging is done by
Then, to get solutions to the full set _using the one-parameter group of
o (e equa IS Gab . gab -0 d:ffe‘c‘Jmorph:sms,' D, assoa'atef'i by the
. . time evolution vector field” o
it suffices—regardless whether the

; ; X . . — could be only a world-line
primary metric g, is Riemannian Remark (ii): if one wants to setup an

or Lorentzian—to solve, in addition, initial-boundary value problem on either
only the secondary reduced equations  side of the hypersurface %, the previous
nEvor) 0 theorem provides a clear mean to identify
ij B the geometrical freedom we have on ¥/,

v
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Foliations and their use

Relations between various parts of the basic equations Il.:

K E., =0
DB — e "Eq =0
Kab(n)Eab _ nE(H) n 2k‘3E£ L KeS E(SV(DL) ¥ (K°.) E(H)
729" Bay = [(Ran®) B + (a7 By Ay + (ﬁah“)EiM) +7% By " 4 Fap BV
7D VBue] = 25 B+ DB + (Reo) BTV - (B O+ 7. BTV RS — 272 B
7%5D° " Bacl = 25 By + DB 0 4 50 BM) + (Re) B — e BGOO
—> if the trace free part of Eiivogvanishes:
%zvom: Eiivom— ﬁ%f [:Y\k:l E}(jvom] -0
KBy " = (s + K E™ +2kB + L (Ke) G By ) =0

2B 4+5/D. B = &
~(M) (M)

%5 Ey (Kee)_ [KﬁbE(H) + 2keﬁbEe ] = (Zab

and it is a linear and homogeneous strongly hyperbolic system

UW-ITP, 11 January 2019 11/24
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Foliations and their use

at is the meanin

Theorem (11.)

@ Assume that the primary constraint
expressions E" and E;M) vanish on
the o = const level surfaces, also that

o k-K° <0 (on all ., ,) and the
secondary constraint expressions B
and E;M) vanish along the Lie
dragging ™), #,,, = ®,[.7,,], of one
of the level surfaces .7, foliating ¥.

(*) w.r.t. the one-parameter group of Remark: initial-boundary value problem on
diffeomorphisms, ®, associated by the either side of the hypersurface #,.....
“time evolution vector field” o® — could be only a world-line

@ — Then, to get solutions to the full set of the primary Einstein’s equations
Gap — Y = 0 it suffices—regardless whether the primary metric g, is
Riemannian or Lorentzian—to solve, in addition, only the trace free part of
the secondary reduced equations

Q
X(EVOL)  ~(EVOL) 1~ gl m(Evors)]
12 =E; = n_1 Yef [7 Ey, ] =0
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The complexity of the field equations has to be reduced I.

Assume: the shift of the “time evolution” vector field ¢ vanishes

@ appears to be pretty strong as a requirement...
o !l Miiller and Sanches (2011): it is not as ill and hellish as it looks for the
first glance
o ... (in the Lorentzian case) to any globally hyperbolic spacetime
(M, gap) there always exists a smooth time function o : M — R with
timelike gradient such that the o = const level surfaces are Cauchy
surfaces, and such that the metric can be given in the form

Gab = €N2 (dO’)a(dU)b + hab

with a bounded lapse function N : M — R, and with a smooth
Riemannian metric hy, on the X, time level surfaces.
@ In case of Riemannian spaces one cannot refer to the correspondent of the
result of Miiller and Sanches.

o Nevertheless, based on the diffeomorphism invariance of the underlying theory
we may simply require, without loss of generality, that the metric g,» possesses
the above “canonical form” [Christodoulou and Klainerman (1993)].
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The complexity of the field equations can be reduced Il.

Introduce the conformal structure by splitting the induced metric 7;;

@ Assume: there exist a smooth function 2 : M — R which does not
vanish—except at locations where the foliation .7, , smoothly reduces to a
lover dimensional subset on the X, level surfaces—such that the induced
metric 7;; can be decomposed as

i; is singled out by the condition:
v (ZLyvi) =0

that is expected to hold on each of the . , surfaces, where n® stands for
either of the “time evolution” vector fields o = (9,)* or p® = (9,)"

79 (Zyn5) = £, Inldet(75)] = 0|

the determinant of «;; is independent of the coordinates o and p
II"it may depend on directions tangential to the level surfaces ./ ,
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Foliations and their use
Verifications

The conformal structure:

@ Does the desired smooth function €2 : M — R and, in turn, the metric v;;
exist?

e (Lnig) = s '\/f/ﬁr///ﬁjr +(n—1) % (In %)

where n® stands either for o or for p*

@ (i) start with the smooth distribution of the induced metric 74;; on the ., ,
surfaces. (ii) integrate the above relation first along the integral curves of p®
on X, starting at some %4, and then along the integral curves of o, starting
at the surface ., on X, (iii) one gets Q2 = Q%(o, p, 23, ...,2""!) as

02 =032 exp[ fo ( p%y)) dﬁ} " exXp [ =1 fO ( U%J)) dﬂ ’

where Qg = Qo(2?,...,2""!) denotes the conformal factor chosen at .
o Is Q consistently defined throughout M7 ... the integrability condition for

In Q2 i v - Suy ~
e Ly [V(LA:5)] = L [T (L)) = 0

holds as the vector fields ¢® and p* do commute by construction
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Solving the constraints

The decomposition of h;; and

o in adopted (local) coordinates (o, p, 22, ..., z"*1) read as

hi; = (N? + NgNF) (dp)i(dp); + 2 Na (dp)a(dz?);) + Fap (dz?); (dzB);

@ whereas, as in the adopted coordinates (o, p, 3, ..., 2" *1), for any
a=23,....,n=1 (2% =p,z4)

| Za(dz®); = N™' Z,(dz*); =0 |

read as

2Kij = Zn(N? + NgNP) (dp)s(dp); + 2 LnNa (dp)i(da?)j) + LnTFap (dz?); (dzP);
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Solving the constraints

The decomposition of h;; and

2Kij = Zn(N? + NgNF) (dp)i(dp); + 2 LaNa (dp)i(dz?) ;) + LnFap (dz?); (daP);

|Kij = Hﬁiﬁj =F [ﬁikj +h\j ki] +Kij ,l

al(dp); = N=1, al(dzA); = —N~IN4 and (dp);37; =0

fy = N(dp); &7°; =68°; —a'n; & ‘:>

K = ﬁkﬁl Kkl = gnlnﬁ
~k ~ =1 ~
k; = %7 Ky = (2N) 3 (Z.NY)
Kij = "7 K = 37°7"5 (i)

K' = Y Ky = §79(L5y) = "3 Lo n

the (conformal invariant) projection operator reads as

Kl ~k Al 1~ ~kl _ k1 1 Kl
I =955 — oy ViV =Y — 71 Vs

Ki; =7 Koy = Kij — 727 75 (V Kep) = $ 2 v* vty Loy

UW-ITP, 11 January 2019 17 /24
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Solving the constraints
The n + 1 constraints

The momentum constraint:

E = ch®onfEep = ¢ (DeK®q — DoK®, — €pg) =0

a

It is a first order symmetric hyperbolic system for the vector valued variable

(k5,KPe)T — (L NP, L,InQ*)T

where the ‘radial coordinate’ p plays the role of ‘time’

regardless of the value of ¢

The Hamiltonian constraint:

E" =nenf By = L{—e "R+ (K¢.)? — KoK/ —2¢} =0

@ it is a parabolic equation for [KY =N~! K & N D'D,N]

@ algebraic equation for

@ regardless of the value of €
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Solving the constraints

Solving the primary constraints:

The n(n + 1) independent components of (h;;, K;;) may be represented by

O
(N N Q771j7 K, kwK I sz)
@ or by applying k=2%,In N and k;, = (1\') ! il (,,Z),“\A'/)

k1 g
vy 5 (i)

)

Q°

l " 2 >
K = ”,)l nIn Q and K;; =

=

(Nv Nia Q,’Yij;gnﬁvgnﬁiv ‘Cnﬂagn'}/z])

@ The constraints can be solved either

(i) as a parabolic—hyperbolic system for

N, %.,Nt, £.Q

with freely specifiable variables on Yq: ‘ (]V’, Q, vij; ,%n]/\?, ) ‘

(ii) or as a symmetrizable hyperbolic system & algebraic equation for

(LN, LuN', La,Q)

with freely specifiable variables on Yq: ‘ (]V, ]\Afi, ) a5 2 2765) ‘

e
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Solving the constraints
Principal parts of the secondary constraints:

20 _ g

('v)

2220+ D'D;Q+QD'D(InN) — —""RQ~" + {lower order terms} = 0

— Z20=..—= %, Q=..on ¥, =D,[.7,]

(M)

=0

i

~ -1 ~ ~ ~ o~ o~ ~
(2N) " Q% 4u(L2NY) + N7 Dy(DINY) + 502 D %] — D[ % (lnN)]
+ QD[ %0 -2 (NQ)_lﬁi %, Q] + {lower order terms} = 0

— L2N = ... — L, N'= .. on ¥ = 0,5
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Solving the constraints
Solubility of the mixed system:

SEVOL)

The principal parts of

~(EVOL)
ij

~(EVvOL)

(g ~(EVO
= Hklij Ey o ﬁ Yij {’ykl Ey, L} =0,

Lokt (€ Loy + L) + 25 N7y La(DINY)
+ Q721" [DpD;(In N + In N)] + {lower order terms} = 0

¢ L2(InN) + Z2(InN) + D'Dy(In N)
+ 5222 Q% [y (81047 ps — 0:DsVpq)] + {lower order terms} = 0

2(n—1)
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Solving the constraints

Solubility of the mixed system:

kL 2 2 ~_1 =
157 (e LRy + LR + 215 N Za (o NY)

+0720*, [DyD;(In N + In N)] + {lower order terms} = 0

e £2(InN) + 220 N) + D' D;(In N)

= =%
n 2&7}1) Q72 P4yt (8,04vps — 91 Dsvpq)] + {lower order terms} = 0

@ Provided that suitable fields Q,'yAB,N s L VABs L, N are chosen on Yo
and N %, NA £, ) on some .7, —> the parabollc—hyperbollc system
El()M) =0& E(H) = 0 can be solved for N,XHN , 2.0

@ Notice that once the fields ]\Af,,,fnf\?,'yAB,fn Yap are known on the initial
data surface X we have initial data for the above two evolutionary equations.

© The fields €, N4 can also be determined on the succeeding 3, level surfaces
by integrating .%,,(2, %, N4 along the ¢ = N n® = (9/9c)® ‘time lines’.

Q This way the corresponding inductive process may be closed by evaluating all
the fields Q,.%2,Q, N, %4, N, NA L N4 S YAB, ZLnyaB on the succeeding X,
level surfaces.
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Summary
Summary:

@ Euclidean and Lorentzian signature Einsteinian spaces of n + 1-dimension
(n > 3) were considered. The topology of M was restricted by assuming:

e smoothly foliated by a one-parameter family of homologous hypersurfaces
o one of these level surfaces is smoothly foliated by a one-parameter family of
homologous codimension-two surfaces

@ the Bianchi identity and a pair of nested decompositions were used to
explore interrelations of various projections of the field equations

© a proposal to setup the initial-boundary problem in GR is given by applying
some geometrically distinguished variables and using the interrelation of
various parts of Einstein's equations

@ the conformal structure ~;;, defined on the foliating codimension-two
surfaces .5 ,, appears to provide a convenient embodiment of the

7(71_21) " — 1 degrees of freedom in Einstein's theory of gravity

@ !!! all these results apply regardless whether the primary space is
Riemannian or Lorentzian
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Summary

That is all... )
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